AD-A175 198

UNCLASSIFIED

RATIONAL ARITHMETIC IN FLOATING-POI
UNIY BERKELEY CENTER FOR PURE AND
W KAHAN SEP 86 PAM-343 N@0814-85-K-81

NTCU) CALIFORNIA 171
PPLIED MATHENATICS

F/G 9/2

g
[

FE

e

FTEERE
| .]
B

3

22

err

r
fr

v . -

e

e

-

.

.

o

:
|-
1

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUREAU OF STANDARDS 1963 A

@ ALY AT AT A
- Lol AL A
VR ~ot.

N AN NN

CENTER FOR PURE AND APPLIED MATHEMATICS
UNIVERSITY OF CALIFORNIA, BERKELEY

PAM-343

RATIONAL ARITHMETIC IN FLOATING-POINT

L

AD-A175 190

&
NG
it R
P som

-

21\
S

L.l—:‘i
mz
=

SeptemMBer 1936

oW W WY A T 4T W

p—” T ari 2+ Asn em s gl oot i Al AnioAedE il Ak Sl
P e M . v - . -

L ara gnn are o B IR SR A AP

This report was done with support from the Center for
Pure and Applied Mathematics. Any conclusions or
opinions expressed in this report represent solely
those of the author(s) and not necessarily those of
the Center for Pure and Applied Mathematics or the
Department of Mathematics.

e e

P A4 YT R 24 4 e A g Al bt b + 2° gl o¥h 2y " l‘ y e

" DISTRIBUTION STATEMENT A ~ ELECT EP

Approved for public relecse;
Distribution Unhmned) - DEC 16 1986

‘ e (;
RATIONAL ARITHMETIC in FLOATING-POINT H.‘;

B

W. kKahan
Math. Dept., and E. E. % Computer Science Dept.
University of California at Berkeley
Sept. 20, 1986

Abstract: Calculating M/N .= A/B ¥ C/D in lowest terms, given
the integers A, B, C and D, 1is a task taught in Elementary
schools; and it is an easy exercise in Computer Frogramming
too provided the given integers must be less than half as wide
as the widest integers that can be handled conveniently by the
computer’ s hardware or by its programming language. FEut that
program becomes much more complicated (and slower) if 1t is
naively expected to perform carrectly whenever all six of our
integers A, B, C, D, M and N are allowed to grow almost as

wide as those widest convenient integers. This simple task
illustrates why the art of programming entails sometimes &
delicate balance between, on the one hand, the simplicity

and aesthetic appeal of the specifications and, on the other
hand, the complexity and efficiency of the implementation.
r

Introduction:
The obvious way to calculate
M/N = A/B + C/D in lowest terms
is to first calculate
Mok = A#D + BxC and N#*#k (= B#p
and then divide them by their Greatest Common Divisor
k = gcdiMek, N*k) .
But the obvious way is no way to calculate
31 /7 1897 31872 = 1234 356799 7/ 1237456 - 9882 97396 / 98821
on a calculator that carries only ten significant decimals
because first

Mok 1= 1234 56799 * 988291 - 1237456 * 98BBL 97396
= 12201 124337 40509 - 12201 12433 20376
= 19933
and
N#k .= 27456 % 988291 = 12 20104 53696
would have to be calculated in order to reveal
k = gcd(19933, 1220104 33694) = 647 .
On that calculator, the two fifteen-digit products would baoth
round to the same value (12201 1243F Q0000) to ten significant
digits, vyielding zero far H*k 3 and N#*4 would get rounded of+
too. However, because the desired final results =31 and

N = 1897 51872 can be held exactly in that calculator, a wav to
compute them exactly ought to exist. An algorithm that does so
without merely simulating arithmetic to at least fifteen cigits is
the subject of this note. The algorithm is not simple, but it is
far simpler than simulating multi-word arithmetic in BARSIC

The Computing Environment:

There are limits to the widths of the integers and floating-point
variables supported conveniently in programming lanquaqges like
Fortran, BARSIC, Fascal and C. Integers on some computers mav

86 10 10 /21

Bl B s

Tvww

W IR RTINS N A NN oA SRR R Al Al M A N LA ARS LA N 2 et

national Arithmetic in Floating-Foint

be no wider than 16 bits, running vrom -32768 to 327675 on ’
most other computers the integers occupy 32 bits, running from
~-21474 83648 to 21474 83647 . Integers bigger tham that lose '
. their leftmost bits to Overflow, usually without any warning

accessible to the higher—-level language program. Floating-point
variables, limited to 24 significant bits on some machines, to
ST or 846 on most others, can handle much bigger integers;: but
integers bigger than

2.0%% = 1467 77216.0 or

2.093 = 9 00719 92547 30992.0 or

2.09¢ = 72 05759 40379 27936.0 respectively
lose their rightmost bits to Roundor¥, and consequently become
multiples of powers of 2 even when ideally they should have been
odd. Similarly, on a typical ten-digit calculator, integers
bigger than 1 00000 00000 get rounded off to multiples of powers
of ten. Rounding errors occur without any warning to the program
(except on machines that conform to IEEE standards 7%4 and p8S4,
which require that rounding errors signal JInexact.) That lack of
warning obliges programmers to clutter some programs with tests of
the magn. tudes of all intermediate results lest incorrect final
results be produced with no indication that they are wrong. !

Let A stand for the smallest pasitive integer beyond which some
digit must be lost to overflow or roundoff; the previous
paragraph tenders values of A appropriate for various machines.
A is what is meant by "“the widest integer that canm be handled
conveniently by the computer’'s hardware or by its programming
language.”" The obvious way to calculate M/N described above
would obviously work if |A*D|, (B#C| and |5#D| were all somewhat
smaller than A , as would surely be the case if 1Al IB1, IC}
and [D| were all somewhat smaller than A . The vagueness here
implied by the word "somewhat" allows for sloppy implementations
of floating-point arithmetic that, on some machines, intraduce
unnecessary rounding errors when integer results approach A too s
closely. Notwithstanding that vagueness, an algorithm will be "
presented that calculates # and N exactly whenever they and the

given integers A4, B, C and D are all somewhat smaller in

magnitude than A rather than merely vA .

Rem, gcd, and Lowest Terms:

Our algorithm will require certain utilities which, if not

already present in the programming environment, will have to be

programmed from scratch. Reducing (f*k)/(N#k) to its lowest

terms M/N requires that &k = gcd(M»k, N#k) be computed: and

the fastest ways to compute gcd's require that remainders be -

computed. Let b"'
rem(x, vy) .= x — y#(the integer nearest x/y) provided vy # O »

This is consistent with the definition of the operation rem that S

must be present ir programming environments that conform to the ‘

IEEE standards 754 and p8%4 for floating-point arithmetic. In \

other environments, rem nust be composed from other primitives. o

In Fortran the generic iIintrinzic function MOD (for INTEGERs, - .-

AMOD for REALs, DMOD for DOUBLE FRECISION) serves to define REM :

thus: P o
e .
s éR 4 i
! gory t . .
1 T- LT S] .
2 2 // . ' |
1] | .
SRR TR Tt e EA . R IR . B A TR T e e I
SRR SARARAS BASASLTERS P S R S T RPN TR NN e e \'-.'\‘ R A A

| 4 o m

%

Tl a A E Y

MRS SR St F a i (Lt Dot ek S 2 S Saals & Pe «™ SHUR P WY, 2l v a9

Rational Arithmetic in Floating-Foint

GENERIC FUNCTION REM(x, V)
REM = MOD(x, V)
IF (ABS(REM) .GT. ABS(y—-REM)) REM = y — REM
RETURN
END
Absent rem and MOD, the following procedure might be used:
function rem(x, vJ):
q 1= x/v 3
n := q rounded to the nearest integer
return rem = x — y¥#n ;
end.
Both procedures can malfunction when x approaches or exceeds A
in magnitude: the following example will show how roundoff in
x/y and y*n causes trouble.

Suppose floating—-point arithmetic is rounded to six significant
decimals, for which A = 1000000 ., Now take X = 999999.0 and
y = 9901.0 , whereupon x/y = 100.99979 80002 ... must round

to ¢ = 101.000 , Then n =g , but y#n = A+1 must round to
Ay, which wrongly returns -1.0 instead of -2.0 for rem .
Similar rounding errors inside the implementation of AMOD can
return -1.0 instead of 9899.0 for AMOD(999999.0, 9901.00)

If the quotient x/y were chopped instead of rounded, no such
mal functions could occur. With rounding, they can be avoided bv
keeping Ix| and |yl both smaller than A/2 . If the error bound
for floating—point division is vague, as it is for CRAYs. we
can compensate for ignorance by further restricting Ix! and vyl 3
that is why phrases like "somewhat smaller than A have been
uttered above.

Having found a way to compute remd(x, yJ) well enough that
(x - rem(x,y})/y 1is an integer exactlvy, and
| remix,y) | £ |yl/2 roughly,
we may use it to compute Greatest Common Divisors quicklv thus:
function gcdix, vJ):
while v # O do (temp =y ;i
Yy = rem(x, v) 3
x .= temp 3 :

return gcd = x| 3
end.
Besides the usual properties for positive integers x and v ,

namely
gcd(x,v) is the largest integer such that
x/gecd(x,y) and y/gecd(x,y’) are bath integers exactly,
this procedure gcdix, y) bhas useful properties when 1ts
arguments are negative integers or cero:
gcd(x,y) = gcd(lix|, Iyl) and gcd(x,0) = gcd(O,x) = |x]| .
These properties simplify the explanation aof the assertion
" M/N is in lowest terms, "
which shall now be taken to mean that integers M and N satisfv
" N >0, and either gcd(M,N) =1 or M =N= 0, "
We shall abbreviate "in lowest terms" to "ilt" and use i1t not

only as an adjective but also as an operator that maps pairs of
integers to pairs thus:

...... PR SN UL TR S N R D P M L B L i O BT S T e le e
A A T e e e i A RN L SRR S S

DN

P A AT SERL N

Rational Arithmetic in Floating-Foint

function Jlt(x, yJ:
g 1= copysign(max{ged(x,y), 13, v J 3
return Ilt = (x/g, ¥Y/@) 3
end.
Now asserting that (M, N) = Ilt(x, v) means the same thing as
M/N = x/y ilt .

Idealized Rational Operations
The mapping Ilt provides a unique pair of integers (#, N} to
represent each rational number M/N = x/y 1ilt , including also
+1/0 = +0 , as well as a representation for the entity /0
called "NaN* (for "Not a Number") in the IEEE standards for
floating—-point arithmetic. But those standards also specifvy how
+0 and -0 will behave arithmetically in case a programmer chooses
to distinguish them, something that cannot be done usefully on
most machines that do not conform to those standards. Without a
wel l-behaved signed zero, attempts to distinguish between +®
waould run afoul of identities like M/N = -1/(-N/M) when i =1
and N = O ., That is why we shall herein regard ® as unsigned,
like 0O , as if the ends of the real axis had been lifted and
Joined to form a circle out of it. Rational operations consistent
with that picture are defined in a familiar way as follows:
A/B + C/D . (A»D + B#C)/(B%D) 1ilt respectively ;
(A/B)# (C*D) : (A%C) /7 (B#D) 1ilt ;
(A/B)+(C/D) . (A#D) / (B%#C) ilt 3

A/B = C/D just when A#D = B#C but {A#*C}t + |B#D}) # O .
Thus, the set of all rational numbers, augmented by ® and /0 ,
constitutes a system closed under the rational operations so
defined. But the subset of rational numbers M/N representatle
conveniently on our computer, those for which Ml and (N[do
not exceed A , does not constitute a closed system; instead it
poses a challenge to implement the rational operations correctlv
for those operands and results that do lie within the subzet.

Implementations of multiplication, division and equalitv-—testing
are entirely straightforward, as follows below, provided all
operands are 1ilt. In other words, the operands are presumed to
be pairs of integers that will pass unchanged through the function
I1t , and the results will do the same provided their magnitudes
are somewhat smaller than A .

function Product(A, B8, &, D)
k .= max{1, gcdcd, D)}
return Product = ((
end.
Note that if the final results are all somewhat smaller in
magnitude than A then the same must be true of all intermediate
results A/k, B/m, C/m and D/k , so the final results are right.

: .. to get (A/B)=*(C/DY 1lt
2 m .= maxi{l, gcd(B, CJ)X
A/k)*(C/m), (B/m)*{(D/K)) 3

function Quotient(A, B, C, D): ... to get (A/B) +(C/D 11t
return d@Quotient = Product(A, B, D, () :
end.

.\’.‘.

LT L LT W TR S IR '- . .‘.-_ N % 1"._ .‘_'. c. \'.4. i -. -_ S .‘.4 A .'. -
'&.{\A‘C\.”\’\:\."-'g’-'s’ ‘. " ’ ’, "‘ ':J’ B e e e e e e e e e e

I R VI A P A WO, WOV

N WL N L A S

Rational Arithmetic in Floating-FPoint

logical function Equal (A, B, C, DJ: ... does A/B = C/D 7
if (B=0 and D=0) then
{ if (A=0 or C=0) then E£qual .= FALSE
else Equatl = TRUE 3
else { if (A=C and B=D) then Equal .= TRUE
else Egqual .= FALSE }
return Equal ;
end.
This procedure Equal depends crucially upon the presumption that
its arguments A/B and /D are 1ilt. Note also that 0/0 is not
equal to anything, not even itself, since it's "Not a Number."

Addition and subtraction are complicated procedures because they
have to cope with expressions like A#D+B#C when their values are
somewhat smaller in magnitude than A even though the individual
products are not. The following subprocedure is needed.

Coping with the Determinant x#t ~ y#z 3

The evaluation of expressions like x*t - y#z = det(y) when
Xy ¥y 2, t and the determinant are all integers somewhat smaller
than A in magnitude, even though «x%*t and y#*z are both rather
bigger, 1s a subtask that occurs often enough to deserve separate
attention. Our approach is inspired by Gausszian Elimination
except that, instead of seeking a biggest pivot in order to
secure numerical stability, it finds the smallest element in the
array (3 §) and reduces some other element to half that size.

The reduction process ends either when x#*t and v#z differ in
sign, or when they are both smaller than A , in which cases the
determinant can be evaluated safely.

function Det(x, v, 2z, t)z ... to get det(y p)
while x*#t#y%z > A do

< if |zl ¥ Iyl then { s = & i
z =y 3
Yy = 5 3 3
if x| » |Jt] then { s != x 3
X =t 3
t =5)} 3
if Ixl > |zl then { 5 = x :
X .= -z 3
zZ .= 5 3
F .= v o
Yy += -t 3
t = = 3
eee Naw x|l < 1zl < 1yl and x| < |t
n .= integer nearest y/x 3
Y = Y — N#n 3 o ae = remiy, x)
t = ¢t - I¥n 3 cee = (Det + y¥z)/x
ce. Now jnew v £ [x/2] and
. lnew t| < [Det/x| + 1z/21 .

return Det
end.

x*t = yaz 3

R NN AT T NN e S L

-
)

AW g]S

e & A

3

e,

P v

a s 2 B 2 »

[l R s)

LA

Rational Arithmetic in Floating-Foint

Addition and Subtraction:

Like the foregoing functions Froduct and Quotient, the following
procedures act upon two pairs of integers that will pass unchanged
through the function 1I1t, and the results are pairs that will de
likewise provided their magnitudes are somewhat less than A .,

function SumcA, B, C, D): ... to get (A/B) + (C/D) ilt
return Sum = Diff(A, B, -C, D) :
end.

function DIif¥cA, B, C, D): ... to get (A/B) - (C/D) ilt
G .= max{l, gcd(B D) 3 b :=8B/G 3 4 :=D/G :
«.s Now we seek (AxJ- b*C)/(G*b*d) ilt, but first we
must cancel any common factor g hiding in &

a .= rem(A,G) 3 ¢ = rem(C,G) 3 g .= gcd(G, a®xd—b#*c) ;
««s Note |a®d=bxc| < ld*6/4l+lb*6/”l <A .

N = (G/g)#b#d ; ... the desired denominator.

«es The numerator will be M = (A*J-OL*C)/g ...

a .= remfa,g) 3 < = rem(c,q) 3

M = (and-b¥z)/q <+ Det(¢ (A—-a)/g, b, (C-2)/g, 4) 3

«e. Note how |a*xd-b#c| < A as before.
return Difry = (M, N) 3
end.

Are they worth the bother?
It seems at first unlikely that a calculation of

M/N = A/B + C/D = (A®D + B»C)/(B*D) ilt
would start with integers A4, B, ¢, D not much smaller than A
and end with integers M, ¥ no bigger than A . PBut, having
programmed the foregoing procedures into various programmable
calculators including an HF-97 and an HF-71R, I have seen
these unlikely events occur about as oftem as not. Ferhaps this
is merely evidence that I have been computing some things the hard
way instead of the easy way, rather than evidence that anvone
else will use the programs every day.

These programs are the simplest I know that exemplify a property
more often found among numerical programs than others: their
simple and natural specifications belie complicated and unnatural
implementations. It may seem natural to demand that, if the data
given a program and the output desired from it can both be
represented exactly within the corvenient range of a computer s
capabilities, the output actually delivered should be correct.
But that demand implies that the program will find a path from the
data to the output without first transgressing the computer’'s
limitations despite that the path begins and ends only a step or
two away from the edge. Such a path need not be abvious.

Programs:

Frograms for the HF-67/97 and HF-71B have been appended to
these notes. The program for the HF-67/97 reqguires very little
change to run on the HF-41C or HF-1S5C. Although the HF-71K
program is written in a kind of BASIC that looks as if it would
run on diverse other machines, the program exploits the HF-7{HE =
conformity to IEEE p8354 in two ways. First, its rem operator

é

e e LY R A AR A e T A S R L M SN -
' " “ f ‘ ‘. o -\' - ".’.\' S B L A O -“-‘.-'. T e .!’.i..-' LA AR A AR ‘~".~' ""\f“

oY \ﬂ

Rational Arithmetic in Floating—-Foint y

(called RED on the HP-71B) 1is built-in and allows the program ,
to handle integer inputs as big as A = 100 00000 0QO00 ., Second,
the Inexact signal accessible through FLAG(INX, ...) permits .
the program to try obvious algorithms first and then, only if it
encounters roundoff, resort to slower ones. Chained sequences of
rational operations can be attempted in confidence because their :

results will assuredly be correct unless Inexact is signaled.

Acknowl edgements:
Al though prepared in this form for an Introductory Numerical .
Analysis class, these notes are based upon researches continued
over an extended period. The author has used procedures similar
to Det 1in programs that solve linear and quadratic equations.
precondition ill-conditioned problems to make them easier to solve
accurately, and prepare test data for other programs. That work
has been supported at times by grants from the Research Offices R
of the U. S. Army, Navy and Air Force under contracts numbered
respectively DAALZI9-85-K-0070, NOOO14-76-C-0013F and AFOSR-B84-0158,

IR RN

1% L " a s

#P-67/97 progras to perfors RATIONAL ARITHMETIC on pairs of integers in Lowest Terus

Usage: The stack holds four integers X, Y, I, T construed as two rational nusbers Y/X and T/1,
both presused to be in lowest terss (ilt). If not, pressing [(E] will reduce Y/X to lowest
teras while leaving T/I unchanged. The four rational operations are perforwed by pressing one of
the keys (A1, [B], [Cl, (D] to invoke reliable prograss, or ({al, (b] (cl [d] to invoke obvious
prograss. The reliable prograss accept integers as large as 1,999,999,999 and deliver exactly

R PRI

correct results up to 8,000,000,000 . Specifically, the prograss ... R
Add: Press (Al or [al toput Y/X := (T/1) ¢ (Y/X} ilt, leaving T/I unchanged. <
Subtract: Press (Bl or ([b] toput Y/X i= (V/1) - (Y/X} ilt, leaving T/I unchinged. .
Multiply: Press (CI1 or ([cl toput Y/X .= (T/D) # (Y/X) ilt, leaving T/l unchanged.
Divide: Press [D] or (d] toput Y/X = (T/1) %+ (Y/X) ilt, leaving T/I unchanged.
Reduce: Press (E1 ta put Y/X i= (Y/X) ilt, leaving T/l unchanged.
6CD: Press (el toput X .= 6reatest Cosmon Divisor of X and Y .
REM: Press {G65B] (8] toput X !=Y-nX and = = Integer nearest Y/X into req. 8. .
The prograss use registers 0 to B and I, and labels 2 to B8 too.)
Progras: #LBL A CHS sLBL B 658 7 X3Y Rt STO 4 65B e X=07 EEX STO S STO:0 SV0:4 RCL { X2¥ "
658 RCL 4 x STO & RCL I Rt 6SB8 RCLO STO7 x RCL & - 658 e STO:5 RCL 1 X2V]

6SB 8 RCL & STOx0 x STO! RCL @ STO 6 RCLJ RPGSBS RCL 7 x REL T - X3Y # STOI
RCL S STOx0 RCL 8 STOS #BLS RCL & RCL 4 x ENTt ENTH RCL S RCL 7 x x EEX 190 -
15Y? 610 4 RCL 6 ABS RCL & ABS X(Y? 670 3 LASTX RCL & STD 4 X3y STO 6 #BL 3 RCLS f
ABS RCL 7 ABS XCY? G6TO 3 LASTX RCL 5 STO 7 X3Y STO S #LBL3 RCL 7 ABS RCL 4 ABS g
X¢Y? 6703 RCL & RCL 7 658 8 STO & RCL & RCL B x STO-5 6T05 #LBL 3 RCL S RCL 4
G588 STOS RCL 7 RCL 8 x STO-6 6TO S sLBL 4 LASTX Rt - GTO+t 670 4

#LBLe 5 CHS STO I Re ¥=07 6TD 2 65D 8 BT0 i (jueps back three steps to X=07)

#LBL 8 STO @ X2Y ENTt ENTT RCL B + OSPO RND STO8 Rt x - RTN #BL 2 XY ABS RIN

#BL7 STOO R STOf Ry STQ 2 Ry STO 3 RN

#BLE 6587 RY 65D e X=0? GTO & STO:0 STO:1

#BL & RCL 3 RCL 2 RCL 1 RCL O XX0? RTN CHS X3Y CHS X3Y RIN '

WBL D X3Y sBLC G587 STO 4 6SB e X#07 STO:0 X#07 STOs4 RCL ! RCL 2 6SB e 3

1#07 STO:1 RCL 2 X3Y X#0? : STOxO RCL 4 STOx! 67D 6 :
Bl a CHS #BL O G65B7 x XY Rt STOx0 x - STO1 6586 670 € 4

#LBL d X3Y #Blc G6SB7 STOx! Rt STOx0O 6SB & 670 E

T
LSRN

......

et p S,
AN ALY

e o AP
St

NS

.. . . NN A D I

. PE . PR YL A IR Y .
- e E . Soe e N DY -
L) -

i I LA R .n".a. .

LY Tt ¥

(I) Ca
EC A A\

.

I

FEAS

4 T

10 !
20 !
Zo !
40 !
50 !
60 !
70 !
80 !
0 !
100
110
120
130
140
150
160
170
180
190
200
210

220

e Ve

230
240
250
260
270
280
290
TOO0
310
I20
330
T40
330
T60
70
380
390
400
410
420
470
440
450
460
470
480
490
SO0
310
S20
330
5S40
SS0
560
S70

PR o A ey A RA omAbe &' sl o el el el el .
LM N T I Sk S A S 'S q.;,r.-h.\.....-« [l) J - \

Rational Arithmetic in Floating-Foint

Listing of HF-71B program to perform RATIONAL ARITHMETIC
upon pairs of integers in Lowest Terms conveyed as

"Caomplex Variables" to represent R = M/N as (M,N) .
The "Complex" functions herein are ...

fnA(R,S) = R+S fnS(R,8) = R-S

fAM(R,5) = R#%*S fnD(R,S) = R/S

fnI(R) = R in lowest terms (ilt)
Supporting Real functions include ...
fnDO(R,S) = det(R,5) = Impt (Conj(R)*S)

! fnG(Il,J) = Greatest Common Divisor of I and J .

! RED(I,J) = rem<(I,J) = I rem J as in [EEE st'd pB8S4
' RUN to sense FLAG(INX) and reset it to O ; if that
! changes then a result has been compromised by roundoff.

caMPL_EX R,S, R1,St, RZ2,52, RZ,53, R4,S54, RS,55, Ré6

b 36 36 96 36 36 36 3 9 3 9% 3 6 96 9 %

DEF FNG(IO,J0) ! ... = GCD(IG,J0)

IF JO=0 THEN 190
o0=J0 @ JO=RED(IO,JO) @ IO=00 @ IF JO#O THEN 180
FNG=ABS(IQ) @ END DEF

D 32630902 0 396 636 96 9696

DEF FNI(R6) ! ... = R& IN LOWEST TERMS
FNI=R&6/MAX (1 ,FNG(REFPT (R&) , IMPT (R6))) *SGN(CLASS (IMFT (R&) Y
END DEF
b 36369 36 6 36 36 % % 96 6 396 %%

DEF FNDO(RS5,S8) ! ... = det(R5,535) = Impt(Conj (R5)#*S%5)
O1=REPT(R3S) @ o0Z=IMPT(RS) @ oI=REPT(5S) @ o04=IMFT(S3)
0O=FLAG(INX,0) @ 0S=SCN(01+%04) *SGN (02#07) @ o00=FLAG(INX,00)

IF 00=0 OR oS#1 THEN 350
IF ABS(03) >ABS(02) THEN 0S=0F @ 03=0Z @ o2
IF ABS(o1) *ABS(04) THEN 0S5=01 @ ol=04 @ o4
IF ABS(01)<=ARS (03JF) THEN 330
05=01 @ oi1=~03 @ oT=05 @ 05=02 @ 02=—04 @ 04=05
0S=RED(02Z,01) @ o00=(02-03)/01 @ 02=05 @ 04=04—-03*#0(
G0Ta 270
FNDO=01#04-02%03 @ END DEF

U362 9 3 36 36 96 3 % % % 2% %

DEF FNM(R4,54) ! ... = R4#S4 in lowest terms
ol=REFT(R4) @ o2=IMPT(R4) @ oI=REFT(S4) @ o04=IMFT(S54)
oS=MAX (1 ,FNG(0l1,04)) @ o0=MAX(1,FNG(02,03))
FNM=((01/05) #(03/00), (02/00)#%*(04/05)) @ END DEF
D 2 3696 36 96 9 3 96 3 3 6 3 ¢

=]
o

(]

than

DEF FND(RZ,S3)=FNM(R3I, (IMPT(SX) ,REFT(SZ))) ' ... = RI/ST 1ilt
P 336 3 36 96 3 6 b 3 % %
DEF FNS(RZ2,52) ' ... = R2-52 in lowest terms

0l1=REPT(R2) @ aZ=IMFT(R2) @ oI=REFT(S2) @ 0d4=IMFPT(S2)
0O=FLAG (INX,0) @ 0S=01%04-02%07 @ 0b&=022%04 @ 0O=FLAG(INX,oO)
IF 00=0 THEN FNS=FNI((05,06)) @ GATO S0
09=MAX (1 ,FNG(0Z,04)) @ 0Z2=02/09 @ 04=04/09

06=RED (01 ,09) @ o07=RED(07.09) @ OS=FNG (09 ,06%04-02%07)
09=(09/05) #0Z*04 @ 0b=RED(p4,05) @ o7=RED(07,05)
08=(0b6%#04-02%07) /05 @ 0l1=(01-06)/05 @ oT=(0T-07) /05
FNS=(FNDO ((ol ,02) , (03,04)) +a8, 09)

END DEF
D 3636 96 36 36 3 9 36 96 36 96 3 30 26
DEF FNA(R1,S51)=FNS(R1,(~-REFT(31) ,IMPT(51))) ! ,,. = R1+S1 ilt

[T T L LR R R

IF FLAG(INX,0)=0 THEN DISF "Exact" ELSE DISF "Inexact®

Ry NS |

aF

ek s

- YRR

September 1986

Sccunty Classificution
it
DOCUMENT CONTROL DATA-R&D
Sevunty classilivation of ke, body ol abstras D and inde €y anoofation noust he entered when the overall teporl (s cliussified
1 OMIGINATING AC TtV TY Carparate author) 28. REFORY SECUMTY CLASSIFICATION
Unclassified
University of California, Berkeley 26 cROUP
3 REPQRTY TITLE
Rational Arithmetic in Floating-Point
4. OESCRIPTIVE NOTES (Type of report and inclusive detes)
CPAM report, September 1986
S AUTHOMIS) (Fiest name, middlie ini1al, last nume)
W. Kahan
¢ REPORT OATE 7e. TOTAL NO OF PAGES 76. NO OF REFS

88 CONTRACT OR GRANT NO
N00014-85-K-0180

b. PROIECT NO

d.

%8. ORIGINATOAR'S REPORT NUMBE RI(S)

20. OTHER REPORT NOIS) (Any other numbers (hat may be sssigned
thrs report)

10 OISTRIBUTION STATEMENT

T DISTRIBUTION STAVEMALIT A

Approved for nubii iciease; i
))
Mgebution Unt J\x‘ i

11 SUPPLEMENTARY NOTES
Also supported by
DAA629-85-K-0070
AFOSR~84-0158

12 SPONSORING MILITARY ACTIVITY

Mathematics Branch
(U. S. Army) Office of Naval Research
(Air Force) Washington, DC 20360

13 ABSTRACT

Calculating M/N = A/B + C/D in lowest terms, given

the integers

A, B, C and D, 1is a task taught in Elementary

schools; and it i{s an easy exercise in Computer Programming

too provided

the given integers must be less than half as wide

as the widest integers that can be handled conveniently by the
computer’'s hardware or by its programming language. FEut that
program becomes much more complicated (and slower) if i1t is
naively expected to perform currectly whenever all six of our

integers A,

wide as those

8, €, D, M and N are allowed to grow almost as
widest convenient integers. This simple tast

illustrates why the art of programming entails sometimes =
delicate balance between, on the one hand, the simplicity
and aesthetic appeal of the specifications and, on the other

hand, the

complexity and efficiency of the implementation.

g';" ")' I~ “A "i?AJ.L_.L

c‘J‘

DD 2™ 1473 tpace 1

S/N 0101.807.6801

Secunty Classitication

ol arail ol ol gUUL AU SR

o qauet pas tar ep et S it e ol uiCH

Legal Notice

This report was prepared as an account of work sponsored by
the Center for Pure and Applied Mathematics. Neither the
Centaer nor the Department of Mathematics, makes any warranty
expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness
of any information or process disclosed.

N

Al et alakamcatal TP NI . T RNV (.

B P S T W Dy ey . |

.- B b»“ ‘5;5& i ENSA R
!P ‘i" “ Y y 4 ;.
] r o, -~ v “ Y
!6‘!<l'\l~ R e, Rkt & T “ }S‘jza Y w
~,
AR "
o -~ kl‘.‘k‘l.l. . '3
% -

+

>

¥

{2

%

2

*
~

L e

2
L~

Ty
» s 4
LY I

.

A

LNC M)

LR

